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Although the lungs are traditionally considered to be overbuilt

for exercise in healthy individuals, respiratory-related

limitations to exercise have been identified. First, during

exercise most humans develop an impairment in pulmonary

gas-exchange, which can lead to a reduction in maximal

oxygen uptake ( _V O2max). Second, ventilatory constraint,

specifically expiratory flow limitation and dynamic

hyperinflation, have been shown to impair exercise

performance. Lastly, respiratory muscle fatigue and/or large

increases in work of breathing can negatively affect exercise

performance by triggering a sympathetic-mediated increase in

vasoconstriction of the locomotor vasculature, which

decreases locomotor muscle O2 delivery. In this review, we

provide a brief overview of these limitations to exercise, and

examine recent advances in the field. In addition, relevant new

work around sex-differences in these limitations to exercise will

be examined.
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Introduction
Historically, the respiratory system was generally con-

sidered overbuilt for exercise in healthy individuals,

with respect to its capacity to meet the maximal meta-

bolic demands of exercise. However, it is now

evident that respiratory limitations to exercise perfor-

mance are present in young healthy individuals. This

brief review will examine recent advances in three key

respiratory-related limitations to exercise in health; 1)

pulmonary gas-exchange impairment, 2) expiratory flow

limitation and dynamic hyperinflation, and 3)

respiratory muscle fatigue and sympathetic-mediated

blood flow distribution. In addition, relevant new work

around sex-differences  in these limitations to exercise

will be detailed.

Pulmonary gas-exchange
During incremental exercise, most humans develop an

impairment in pulmonary gas-exchange, as determined

by a widened alveolar-arterial difference (A-aDO2).

A-aDO2 has been shown to be a primary contributor to

exercise-induced arterial hypoxemia (EIAH), defined as a

decrease in PaO2 and/or the O2 saturation of hemoglobin

in arterial blood with exercise [1,2]. Substantial EIAH

(i.e. >4–5% decrease in O2 saturation from rest), can

result in a reduction in maximal oxygen uptake ( _V O2max)

[1,3,4] and therefore this represents an important poten-

tial limitation to exercise. The determinants of A-aDO2

are ventilation-perfusion matching ( _V A/ _Q ), diffusion lim-

itation, and shunt, and greater background is available in

previous reviews [1,2].

During moderate to heavy exercise, _V A/ _Q mismatch

accounts for most of the increase in A-aDO2 [5,6]. As

exercise intensity approaches _V O2max, diffusion limita-

tion becomes the predominant contributor to the wid-

ened A-aDO2, and is most common in highly fit individ-

uals exercising near peak exercise (>�60 ml/kg/min)

[6,7]. The mechanism of increased _V A/ _Q mismatch dur-

ing exercise is not certain, however, previous research

has suggested interstitial pulmonary edema secondary

to high pulmonary vascular pressures during exer-

cise [5,8]. Interstitial edema would distort the surround-

ing architecture (i.e. alveoli and capillary network) and

thus lead to a deterioration of _V A/ _Q matching [5,9].

Altered diameter of the airways and blood vessels, sec-

ondary to the presence of edema-related cuffing,

would negatively affect distribution of ventilation and

perfusion, leading to areas of both low and high _V A/ _Q ,

respectively, within the lung [10]. Further, alveolar inter-

stitial fluid may alter local lung compliance, which

could lead to further impairments of airflow distribution,

resulting in areas of low _V A/ _Q and ultimately increased A-

aDO2 [10]. There is a large amount of evidence demon-

strating that _V A/ _Q mismatch is increased with exercise

[5,6,8,9] and sustained in recovery [11], which is consis-

tent with the development of edema during exercise.

Additionally, previous work has suggested that _V A/ _Q
mismatch is potentiated during exercise with hyp-

oxia [12], which may be secondary to the

development of edema and/or hypoxic pulmonary vaso-

constriction [12].
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Previous work, using right heart catheterization, has shown

that endurance-trained subjects demonstrate enhanced left

ventricular compliance when compared to untrained indi-

viduals [13,14]. These data would suggest that the enhanced

cardiac function in endurance-trained subjects may act to

limit the rise in pulmonary vascular pressures with

exercise and thus reduce the risk of edema [14–16]. While

exercise-induced edema secondary to high pulmonary vas-

cular pressure is a popular theory, to-date no study has

directly linked anatomical evidence of edema with _V A/ _Q
mismatch quantified by the multiple inert gas elimination

technique (MIGET). Techniques to increase accuracy of

identifying edema during exercise (with simultaneous

measurements of pulmonary gas exchange) are required

to better support the hypothesis of edema as a cause of

exercise-induced _V A/ _Q mismatch.

The mechanism for the development of diffusion limita-

tion during exercise is not well known; however, it has

been hypothesized that diffusion limitation may be due to

the development of edema, and/or inadequate pulmonary

transit time [1,6,17]. With the increased oxygen consump-

tion during exercise, the pulmonary diffusing capacity

must increase in order to maintain gas exchange and limit

the increase in A-aDO2. While endurance-trained ath-

letes show enhanced cardiovascular function compared to

untrained individuals, it is generally accepted that exer-

cise training has no effect on lung function or structure

[18–20], and therefore a diffusion limitation may develop

at high work rates because of an inability to increase

diffusing capacity sufficiently to meet metabolic demand.

Two important determinants of diffusing capacity are

pulmonary capillary blood volume (Vc) and diffusing

membrane capacity (Dm). As pulmonary arterial pressure

increases with exercise, Vc increases secondary to capil-

lary recruitment and distension. With greater capillary

recruitment, Dm is increased as more capillaries are

perfused [2,21]. The recruitment and distension of pul-

monary capillaries also aid to reduce pulmonary vascular

resistance and mitigate the increases in pulmonary artery

pressure typically observed during high-intensity exercise

[14,22]. Lalande et al. recently demonstrated that a high
_V O2max is associated with a greater resting Vc [23].

Similarly, Zavorsky and Smoliga found a positive correla-

tion between resting diffusing capacity for carbon mon-

oxide (DLCO) and _V O2max in young healthy individuals

[24�]. Tedjasaputra et al. examined the pulmonary diffus-

ing capacity, Vc and Dm responses to exercise in endur-

ance-trained males athletes, and untrained individuals

with normal lung function [25��]. They found that ath-

letes had a greater Vc at rest and a higher DLCO during

high intensity exercise (90% _V O2max) [25��]. Interest-

ingly, the larger diffusing capacity was primarily the result

of enhanced Dm, independent of pulmonary blood flow

or alveolar volume [25��]. Similarly, Coffman et al. found

that, during exercise at 90% _V O2max, DLCO, Vc and Dm

were greater in highly fit older adults (mean age = 65 � 5

yrs, _V O2max = 162 � 18% of predicted) as compared to

older adults of average fitness (mean age = 69 � 5 yrs,
_V O2max = 116 � 13% of predicted), suggesting that any

fitness or training-induced difference is maintained

regardless of age [26]. When combined, these recent

studies suggest that endurance-trained athletes appear

to have differences within the alveolar-capillary mem-

brane that facilitate the increased O2 diffusion required

during high-intensity exercise [23,24�,25��]. Further, the

higher Vc in endurance-trained athletes despite similar

(or lower) perfusion pressures observed in these individ-

uals [13,14], would suggest greater pulmonary compliance

and/or a lower threshold for capillary recruitment as

compared to less trained subjects. These vascular adapta-

tions would help to 1) facilitate efficient pulmonary gas-

exchange and minimize the A-aDO2 typically observed

during heavy exercise, and, 2) limit the rise in pulmonary

perfusion pressure during exercise. The latter would help

decrease the likelihood for pulmonary edema, while also

diminishing the increase in right ventricle stroke work,

which would facilitate a greater stroke volume and ulti-

mately, cardiac output.

Blood that passes through the pulmonary circulationwithout

taking part in gas-exchange is defined as an intra-pulmonary

(I-P) shunt. Previous work has shown evidence that exercise

recruits intrapulmonaryarteriovenousanastomoses (IPAVA)

[27,28]. IPAVA recruitment has been associated with an

increased A-aDO2 during exercise [27], and it has been

hypothesized that IPAVA may be involved in reducing

pulmonary vascular pressures during exercise [27,28]. While

IPAVA has been consistently documented using a variety of

techniques in humans [27–30] and animals [31], the physio-

logical significance of these vessels as they pertain to gas

exchange is controversial, as gas-exchange techniques such

as MIGET have never documented significant right-to-left

shunt during exercise in healthy subjects [1,6,32]. The

reader is referred to two key review articles [33,34] and a

point-counterpoint discussion [32,35] for a more thorough

review of shunt and pulmonary gas exchange.

In summary, pulmonary gas exchange impairment during

heavy exercise is complex and multifactorial. Despite

considerable research, the mechanism(s) for the increased

A-aDO2 with exercise still remain to be fully explained.

Expiratory flow limitation and dynamic
hyperinflation
Expiratory flow limitation (EFL) is defined as an increase

in transpulmonary pressure with no increase in expiratory

flow [36], and when exercising at near-maximal intensi-

ties, it is common for individuals with normal lung func-

tion to develop EFL. In the presence of EFL, end-

expiratory lung volume (EELV) may increase above

resting values, resulting in dynamic hyperinflation.

Dynamic hyperinflation is initially an effective strategy
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to facilitate greater airflow; however, the change in oper-

ating lung volume places tidal volume on the flat non-

compliant portion of the sigmoidal pressure–volume

curve, substantially increasing the elastic work of breath-

ing, which can intensify the sensation of dyspnea [37,38].

Dynamic hyperinflation can also reduce the ability of tidal

volume to expand appropriately with exercise, leading to

ventilatory constraint and alveolar hypoventilation, which

can contribute to EIAH [37]. Although EFL and dynamic

hyperinflation are more common and severe in patients

with chronic lung disease (i.e. COPD and asthma), they

can occur in young individuals with normal lung function,

leading to respiratory muscle fatigue and/or ventilatory

constraint, which can negatively affect exercise perfor-

mance [39–42].

The presence of increased EFL and/or dynamic hyper-

inflation has been shown to have adverse effects on

cardiac output, as increased expiratory pressure, second-

ary to EFL, can raise right atrial pressure and central

venous pressure, which reduces the gradient for venous

return and cardiac filling [36,43,44�]. Recently, Cheyne

et al. experimentally induced various levels of dynamic

hyperinflation during spontaneous breathing at rest in

young healthy individuals and observed a progressive

reduction in left ventricular end-diastolic volume and

stroke volume [44�]. Although these data were acquired

in a resting state, it is plausible that the observed

impairment in left ventricular function could be exacer-

bated during exercise, especially in individuals who are

prone to severe dynamic hyperinflation [44�]. Additional

experiments are required to better understand the com-

plex relationship between ventilatory mechanics and

cardiac function during exercise in young healthy

individuals.

Although the mechanism of dynamic hyperinflation is not

fully understood, it has been hypothesized that dynamic

hyperinflation (increased EELV above resting levels)

with the occurrence of EFL is the result of a reflex

inhibition of respiratory motor output and early termina-

tion of expiration, secondary to dynamic compression of

airways [45,46]. A more recent hypothesis suggests that a

reflex mechanism may be triggered to increase EELV and

avoid both EFL and dynamic compression [47��,48]. The

former hypothesis has been supported by numerous stud-

ies, which have demonstrated an increase in EELV in the

presence of EFL, during moderate to very heavy exercise

[45,46,49,50]. However, recent findings have provided

evidence that the increase in EELV, typically observed

during very heavy exercise, is coincident with EFL

[42,47��,51]. Both Dominelli et al. and Taylor et al. dem-

onstrated that EELV was increased throughout incre-

mental exercise in young healthy individuals without

EFL, indicating that EFL is not a requirement for

dynamic hyperinflation [47��,51]. Similar results were

observed during incremental exercise in young healthy

mild asthmatics [42]. These findings support older work

that previously demonstrated dynamic hyperinflation in

the absence of EFL during exercise [52]. When com-

bined, these data suggest that factors other than the

development of ‘frank’ EFL contribute to dynamic

hyperinflation during heavy exercise.

Respiratory muscle fatigue and sympathetic-
mediated blood flow distribution
Accumulating evidence suggests that respiratory muscle

fatigue can occur during heavy intensity (>80% _V O2max),

sustained whole-body exercise in healthy individuals and

negatively affect exercise performance by triggering a

metaboreflex, which decreases locomotor muscle O2

delivery. Briefly, fatigue of the respiratory muscles and

increased metabolite accumulation increases phrenic

afferent feedback, which in turn increases sympathetic-

mediated vasoconstriction of the locomotor vasculature,

via a supra-spinal reflex, and decreases O2 delivery to

these muscles, secondary to reduced limb blood flow

[38,53–56]. Importantly, recent work has shown that

the respiratory-related increases in vasoconstriction can

be triggered with short bouts of exercise, without the

development of respiratory muscle fatigue [57��,58].
Dominelli et al. demonstrated that when work of breath-

ing was experimentally increased, locomotor blood flow

decreased during exercise, and conversely, when work of

breathing was reduced, locomotor blood flow was

improved [57��]. Interestingly, the opposing changes in

blood flow distribution occurred simultaneously with

changes in work of breathing [57��]. Further, these data

suggest that changes in sympathetic vasoconstrictor out-

flow and blood flow distribution may be sensitive to large

increases in work of breathing, even without the devel-

opment of respiratory muscle fatigue [57��,58,59].
Regardless of the presence of respiratory muscle fatigue,

these data provide further evidence that the respiratory-

mediated changes in limb blood flow suggest competition

between respiratory and limb blood flow in the face of

limited cardiac output [53,57��,60]. Readers are referred

to a recent review by Sheel et al. that provides an excellent

summary of the competition for blood flow distribution

between respiratory and locomotor muscle [61�].

The previously discussed evidence (Dominelli et al.)
would suggest that during heavy exercise, the distribution

of cardiac output may be prioritized to the respiratory

muscles over limb muscles [57��]. Conversely, Vogiatzis

et al. showed that respiratory conductance (measured

using near-infrared spectroscopy on the 7th intercostal)

in trained cyclists was significantly lower during maximal

exercise as compared to resting isocapnic hyperpnea trials

at ventilation rates matched to those observed during

exercise (i.e. �150 l/min) [62]. These data provide evi-

dence of the substantial influence of locomotor muscle

activity on respiratory muscle blood flow and suggests that

blood flow may not always be prioritized to the respiratory

Respiratory limitations to exercise in health Phillips and Stickland 175

www.sciencedirect.com Current Opinion in Physiology 2019, 10:173–179



muscles at near-maximal ventilation rates [62]. Despite

the work by Vogiatzis and the recent findings of Dom-

inelli, it remains to be determined whether there is

specific prioritization of blood flow between respiratory

and locomotor muscles during heavy exercise in humans.

Sex-differences in ventilatory mechanics and
pulmonary gas exchange
Women have smaller lungs and airways, and fewer alveoli

than men of the same height [63]. Recently, multiple

studies have investigated sex differences in pulmonary

gas exchange, ventilatory mechanics, perceptual

responses to exercise, and the respiratory-related influ-

ences on cardiovascular regulation during exercise

[64,65,66�,67–69,70�,71,72��,73,74]. To briefly summa-

rize, at the same minute ventilation, women have a higher

work of breathing and oxygen cost of breathing as com-

pared to men, with the difference becoming greater with

increased ventilation (i.e. at ventilation rates greater than

60 l/min) [64,69,70�]. Further, women tend to breathe at a

higher proportional operating lung volume, compared to

men, and expiratory flow limitation is more common in

highly trained women as compared to highly trained men

[64]. Not surprisingly, at comparable exercise ventilation

rates, women tend to report a greater sensation of dyspnea

[65,66�,67]. Interestingly, sex differences were consis-

tently abolished when dyspnea was compared to relative

ventilation rates (i.e. percentage of peak ventilation and/

or maximal voluntary ventilation), which suggests that

perceived dyspnea rises proportionally to ventilatory

capacity in young healthy men and women [66�]. Despite

having a greater work of breathing during exercise, the

respiratory metaboreflex has been shown to be attenuated

in young women [73]. Further, diaphragm fatigability is

lower in women, than men, which may explain the lower

prevalence of respiratory metaboreflex activation [74].

One recent publication showed compelling evidence that

women with average fitness ( _V O2max �40 ml/kg/min) are

prone to developing EIAH [71], which is in contrast to men,

where there is no published work demonstrating EIAH in

untrainedmen.InthestudybyDominelli etal.,womenwitha

wide range of aerobic fitness ( _V O2max = 28–62 ml/kg/min)

completed maximal exercise tests with and without

heliox gas. Although the development of EIAH was more

common in the aerobically trained woman, some

untrained women (� _V O2max = 38 ml/kg/min) also devel-

oped EIAH. Experimentally reversing mechanical con-

straint (with heliox gas) partially reversed EIAH, in the

women who had developed expiratory flow limitation,

leading the authors to conclude that EIAH in women was

in part, but not exclusively, due to mechanical ventilatory

constraint during heavy exercise [71].

In addition to examining breathing mechanics, recent

work by Bouwsema et al. examined potential sex differ-

ences in pulmonary diffusing capacity, Vc and Dm

responses to exercise [72��]. When compared to height-

matched men, women have lower DLCO, Vc and Dm at

rest and during exercise, up to 90% of _V O2max [72��].
However, these sex differences were eliminated when

accounting for differences in alveolar volume (i.e. lung

size). The methods used in this study also allowed for

calculation of red blood cell pulmonary transit time, and

found no sex differences even at peak exercise in the

most fit women and men. The results from Bouwsema

et al. suggest that there are no intrinsic differences in

DLCO, Vc, Dm and pulmonary transit time between men

and woman, and that the greater susceptibility to EIAH in

women is unlikely to be related to determinants of

pulmonary diffusion [72��].

Conclusion
In this brief review, we highlighted several areas of emerg-

ing research examining pulmonary system limitations to

exercise performance in healthy individuals. Pulmonary

gas-exchange impairment, ventilatory constraint and respi-

ratory muscle fatigue are all key respiratory-related limita-

tions to exercise in health; however, there are unanswered

questions in each area that require future investigation.

First, additional work examining the mechanisms for the

increased A-aDO2 during exercise ( _V A/ _Q matching, diffu-

sion limitation, and shunt) is required. Second, further

experiments are needed to better understand the mecha-

nism(s) for dynamic hyperinflation and expiratory flow

limitation, and their relationship (or lack thereof) to

one another. Third, additional experiments are

required to better understand the complex relationship

between respiratory and locomotor afferent feedback, and

the distribution of blood flow at near-maximal exercise

intensities. Lastly, future experiments, investigating

sex-differences in pulmonary gas exchange during exer-

cise, are required to better understand why EIAH is more

prevalent in women than men.
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